3.291 \(\int (a+a \cos (c+d x)) \sec ^{\frac{7}{2}}(c+d x) \, dx\)

Optimal. Leaf size=151 \[ \frac{2 a \sin (c+d x) \sec ^{\frac{5}{2}}(c+d x)}{5 d}+\frac{2 a \sin (c+d x) \sec ^{\frac{3}{2}}(c+d x)}{3 d}+\frac{6 a \sin (c+d x) \sqrt{\sec (c+d x)}}{5 d}+\frac{2 a \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 d}-\frac{6 a \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{5 d} \]

[Out]

(-6*a*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(5*d) + (2*a*Sqrt[Cos[c + d*x]]*Ellipti
cF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(3*d) + (6*a*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(5*d) + (2*a*Sec[c + d*x]
^(3/2)*Sin[c + d*x])/(3*d) + (2*a*Sec[c + d*x]^(5/2)*Sin[c + d*x])/(5*d)

________________________________________________________________________________________

Rubi [A]  time = 0.110528, antiderivative size = 151, normalized size of antiderivative = 1., number of steps used = 9, number of rules used = 6, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.286, Rules used = {3238, 3787, 3768, 3771, 2641, 2639} \[ \frac{2 a \sin (c+d x) \sec ^{\frac{5}{2}}(c+d x)}{5 d}+\frac{2 a \sin (c+d x) \sec ^{\frac{3}{2}}(c+d x)}{3 d}+\frac{6 a \sin (c+d x) \sqrt{\sec (c+d x)}}{5 d}+\frac{2 a \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 d}-\frac{6 a \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{5 d} \]

Antiderivative was successfully verified.

[In]

Int[(a + a*Cos[c + d*x])*Sec[c + d*x]^(7/2),x]

[Out]

(-6*a*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(5*d) + (2*a*Sqrt[Cos[c + d*x]]*Ellipti
cF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(3*d) + (6*a*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(5*d) + (2*a*Sec[c + d*x]
^(3/2)*Sin[c + d*x])/(3*d) + (2*a*Sec[c + d*x]^(5/2)*Sin[c + d*x])/(5*d)

Rule 3238

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(m_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^(n_.))^(p_.), x_Symbol] :> Dist
[d^(n*p), Int[(d*Csc[e + f*x])^(m - n*p)*(b + a*Csc[e + f*x]^n)^p, x], x] /; FreeQ[{a, b, d, e, f, m, n, p}, x
] &&  !IntegerQ[m] && IntegersQ[n, p]

Rule 3787

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[a, Int[(d*
Csc[e + f*x])^n, x], x] + Dist[b/d, Int[(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n}, x]

Rule 3768

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> -Simp[(b*Cos[c + d*x]*(b*Csc[c + d*x])^(n - 1))/(d*(n -
 1)), x] + Dist[(b^2*(n - 2))/(n - 1), Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1
] && IntegerQ[2*n]

Rule 3771

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rubi steps

\begin{align*} \int (a+a \cos (c+d x)) \sec ^{\frac{7}{2}}(c+d x) \, dx &=\int \sec ^{\frac{5}{2}}(c+d x) (a+a \sec (c+d x)) \, dx\\ &=a \int \sec ^{\frac{5}{2}}(c+d x) \, dx+a \int \sec ^{\frac{7}{2}}(c+d x) \, dx\\ &=\frac{2 a \sec ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{3 d}+\frac{2 a \sec ^{\frac{5}{2}}(c+d x) \sin (c+d x)}{5 d}+\frac{1}{3} a \int \sqrt{\sec (c+d x)} \, dx+\frac{1}{5} (3 a) \int \sec ^{\frac{3}{2}}(c+d x) \, dx\\ &=\frac{6 a \sqrt{\sec (c+d x)} \sin (c+d x)}{5 d}+\frac{2 a \sec ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{3 d}+\frac{2 a \sec ^{\frac{5}{2}}(c+d x) \sin (c+d x)}{5 d}-\frac{1}{5} (3 a) \int \frac{1}{\sqrt{\sec (c+d x)}} \, dx+\frac{1}{3} \left (a \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{1}{\sqrt{\cos (c+d x)}} \, dx\\ &=\frac{2 a \sqrt{\cos (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{\sec (c+d x)}}{3 d}+\frac{6 a \sqrt{\sec (c+d x)} \sin (c+d x)}{5 d}+\frac{2 a \sec ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{3 d}+\frac{2 a \sec ^{\frac{5}{2}}(c+d x) \sin (c+d x)}{5 d}-\frac{1}{5} \left (3 a \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \sqrt{\cos (c+d x)} \, dx\\ &=-\frac{6 a \sqrt{\cos (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{\sec (c+d x)}}{5 d}+\frac{2 a \sqrt{\cos (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{\sec (c+d x)}}{3 d}+\frac{6 a \sqrt{\sec (c+d x)} \sin (c+d x)}{5 d}+\frac{2 a \sec ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{3 d}+\frac{2 a \sec ^{\frac{5}{2}}(c+d x) \sin (c+d x)}{5 d}\\ \end{align*}

Mathematica [C]  time = 1.60632, size = 268, normalized size = 1.77 \[ \frac{a (\cos (c+d x)+1) \sec ^2\left (\frac{1}{2} (c+d x)\right ) \left (i \sqrt{2} e^{-i (c+d x)} \sqrt{\frac{e^{i (c+d x)}}{1+e^{2 i (c+d x)}}} \left (9 \left (-1+e^{2 i c}\right ) \sqrt{1+e^{2 i (c+d x)}} \, _2F_1\left (-\frac{1}{4},\frac{1}{2};\frac{3}{4};-e^{2 i (c+d x)}\right )+5 \left (-1+e^{2 i c}\right ) e^{i (c+d x)} \sqrt{1+e^{2 i (c+d x)}} \, _2F_1\left (\frac{1}{4},\frac{1}{2};\frac{5}{4};-e^{2 i (c+d x)}\right )+9 \left (1+e^{2 i (c+d x)}\right )\right )+\left (1-e^{2 i c}\right ) \sqrt{\sec (c+d x)} (9 \csc (c) \cos (d x)+\tan (c+d x) (3 \sec (c+d x)+5))\right )}{15 \left (d-e^{2 i c} d\right )} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + a*Cos[c + d*x])*Sec[c + d*x]^(7/2),x]

[Out]

(a*(1 + Cos[c + d*x])*Sec[(c + d*x)/2]^2*((I*Sqrt[2]*Sqrt[E^(I*(c + d*x))/(1 + E^((2*I)*(c + d*x)))]*(9*(1 + E
^((2*I)*(c + d*x))) + 9*(-1 + E^((2*I)*c))*Sqrt[1 + E^((2*I)*(c + d*x))]*Hypergeometric2F1[-1/4, 1/2, 3/4, -E^
((2*I)*(c + d*x))] + 5*E^(I*(c + d*x))*(-1 + E^((2*I)*c))*Sqrt[1 + E^((2*I)*(c + d*x))]*Hypergeometric2F1[1/4,
 1/2, 5/4, -E^((2*I)*(c + d*x))]))/E^(I*(c + d*x)) + (1 - E^((2*I)*c))*Sqrt[Sec[c + d*x]]*(9*Cos[d*x]*Csc[c] +
 (5 + 3*Sec[c + d*x])*Tan[c + d*x])))/(15*(d - d*E^((2*I)*c)))

________________________________________________________________________________________

Maple [B]  time = 4.081, size = 384, normalized size = 2.5 \begin{align*} -4\,{\frac{\sqrt{- \left ( -2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}+1 \right ) \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}a}{\sin \left ( 1/2\,dx+c/2 \right ) \sqrt{2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}d} \left ( -1/12\,{\frac{\cos \left ( 1/2\,dx+c/2 \right ) \sqrt{-2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}+ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}}{ \left ( \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1/2 \right ) ^{2}}}+{\frac{7\,\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sqrt{-2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}+1}{\it EllipticF} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) }{15\,\sqrt{-2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}+ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}}}-1/40\,{\frac{\cos \left ( 1/2\,dx+c/2 \right ) \sqrt{-2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}+ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}}{ \left ( \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1/2 \right ) ^{3}}}-3/5\,{\frac{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}\cos \left ( 1/2\,dx+c/2 \right ) }{\sqrt{- \left ( -2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}+1 \right ) \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}}}-3/10\,{\frac{\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sqrt{-2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}+1} \left ({\it EllipticF} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) -{\it EllipticE} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) \right ) }{\sqrt{-2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}+ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}}} \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+cos(d*x+c)*a)*sec(d*x+c)^(7/2),x)

[Out]

-4*(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*a*(-1/12*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2*c
)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(cos(1/2*d*x+1/2*c)^2-1/2)^2+7/15*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x
+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-
1/40*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(cos(1/2*d*x+1/2*c)^2-1/2)^3-3/5*
sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)/(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)-3/10*(sin(1/
2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(
EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))))/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*
x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (a \cos \left (d x + c\right ) + a\right )} \sec \left (d x + c\right )^{\frac{7}{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))*sec(d*x+c)^(7/2),x, algorithm="maxima")

[Out]

integrate((a*cos(d*x + c) + a)*sec(d*x + c)^(7/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left ({\left (a \cos \left (d x + c\right ) + a\right )} \sec \left (d x + c\right )^{\frac{7}{2}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))*sec(d*x+c)^(7/2),x, algorithm="fricas")

[Out]

integral((a*cos(d*x + c) + a)*sec(d*x + c)^(7/2), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))*sec(d*x+c)**(7/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (a \cos \left (d x + c\right ) + a\right )} \sec \left (d x + c\right )^{\frac{7}{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))*sec(d*x+c)^(7/2),x, algorithm="giac")

[Out]

integrate((a*cos(d*x + c) + a)*sec(d*x + c)^(7/2), x)